Abstract

In this paper, we develop a sufficient stability condition for a class of coupled first-order linear hyperbolic partial differential equations (PDEs) with constant coefficients that appear when considering target systems for backstepping boundary control.Using a backstepping transform, the problem is reformulated as a stability problem for a difference equation with distributed delay. Finding the explicit solution to the backstepping kernels, we derive an explicit sufficient condition depending on the plant coefficients. This stability condition is compared to an existing stability result based on a Lyapunov analysis. Both the proposed and existing sufficient conditions are then contrasted in some examples to a (computationally expensive) numerical approximation of a necessary and sufficient condition for exponential stability to illustrate their conservatism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.