Abstract

This study focuses on the stability property of a class of distributed delay systems with constant coefficients. More precisely, the authors will discuss deeper the stability analysis with respect to the delay parameter. The authors' approach will allow to give new insights in solving the so-called complete stability problem. There are three technical issues need to be studied: First, the detection of the critical zero roots (CZRs); second, the analysis of the asymptotic behaviour of such CZRs; third, the asymptotic behaviour analysis of the critical imaginary roots (CIRs) with respect to the infinitely many critical delays. They extended their recently-established frequency-sweeping approach, with which these technical issues can be effectively solved. Based on these results, a procedure was proposed, with which the complete stability analysis of such systems was accomplished systematically. Moreover, the procedure represents a unified approach: Most of the steps required by the complete stability problem may be fulfilled through observing the frequency-sweeping curves. Finally, some examples illustrate the effectiveness and advantages of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.