Abstract
We study stability of linear systems with fast time-varying coefficients. The classical averaging method guarantees the stability of such systems for small enough values of parameter provided the corresponding averaged system is stable. However, it is difficult to find an upper bound on the small parameter by using classical tools for asymptotic analysis. In this paper we introduce an efficient constructive method for finding an upper bound on the value of the small parameter that guarantees a desired exponential decay rate. We transform the system to a model with time-delays of the length of the small parameter. The resulting time-delay system is a perturbation of the averaged LTI system which is assumed to be exponentially stable. The stability of the time-delay system guarantees the stability of the original one. We construct an appropriate Lyapunov functional for finding sufficient stability conditions in the form of linear matrix inequalities (LMIs). The upper bound on the small parameter that preserves the exponential stability is found from LMIs. Two numerical examples (stabilization by vibrational control and by time-dependent switching) illustrate the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.