Abstract

In a research field of network-based control systems (NBCSs), the time delay problem is one of the most significant issues. Efficient stabilization methods of time delayed control systems enable NBCSs to be flexibly applied to many kinds of situations. A novel time delay compensation method based on the concept of network disturbance (ND) and communication disturbance observer (CDOB) has been proposed. The compensation method has the same effectiveness as that of the Smith predictor. In addition, since the method is simple and does not need time delay model or time delay measurement, it can be easily implemented to various applications. However, the design method has not been concerned so far. This paper therefore presents stability analysis and studies a practical design procedure of the time delayed control systems with CDOB. At first, the concept of ND is introduced and the validity of the time delay compensation method is described. Then an analysis about the effects of parameters in control systems on stability is conducted. Characteristics of the effects of parameters on stability come out. Then we study a practical design procedure of the time delayed control systems. The validity of the design procedure is validated by experimental results. In the experiment, we also verify the performance of the system in the case of time-varying delay. Finally, comparative study of the method to the Smith predictor is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.