Abstract
This paper deals with the observer design problem for a class of linear delay systems of the neutral-type. The problem addressed is that of designing a full-order observer that guarantees the exponential stability of the error dynamic system. An effective algebraic matrix equation approach is developed to solve this problem. In particular, both the observer analysis and design problems are investigated. By using the singular value decomposition technique and the generalized inverse theory, sufficient conditions for a neutral-type delay system to be exponentially stable are first established. Then, an explicit expression of the desired observers is derived in terms of some free parameters. Furthermore, an illustrative example is used to demonstrate the validity of the proposed design procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.