Abstract

This paper deals with the observer design problem for a class of linear delay systems of the neutral-type. The problem addressed is that of designing a full-order observer that guarantees the exponential stability of the error dynamic system. An effective algebraic matrix equation approach is developed to solve this problem. In particular, both the observer analysis and design problems are investigated. By using the singular value decomposition technique and the generalized inverse theory, sufficient conditions for a neutral-type delay system to be exponentially stable are first established. Then, an explicit expression of the desired observers is derived in terms of some free parameters. Furthermore, an illustrative example is used to demonstrate the validity of the proposed design procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call