Abstract

In this research, the three-dimensional (3D) steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed. The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation. The slip for viscous fluid is considered. The energy equation is organized in view of radiative heat flux which plays an important role in the heat transfer rate. The governing flow expressions are first altered into first-order ordinary ones and then solved numerically by the shooting method. Dual solutions are obtained for the velocity, skin friction coefficient, temperature, and Nusselt number subject to sundry flow parameters, magnetic parameter, Darcy-Forchheimer number, thermal radiation parameter, suction parameter, and dimensionless slip parameter. In this research, the main consideration is given to the engineering interest like skin friction coefficient (velocity gradient or surface drag force) and Nusselt number (temperature gradient or heat transfer rate) and discussed numerically through tables. In conclusion, it is noticed from the stability results that the upper branch solution (UBS) is more reliable and physically stable than the lower branch solution (LBS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call