Abstract

The attempt is made to enhance the performance of a closed loop control of DC series motor fed by DC chopper (DC-DC buck converter) by hybridization of PID controller with an intelligent control using ANN (Artificial Neural Network) controller. This system consists of inner current controller loop and outer PID-ANN based speed controller loop. The current controller allows the PWM (Pulse Width Modulation) signal when the motor current is less than set value. The PID-ANN speed controller controls the motor voltage by controlling the duty cycle of the chopper thereby the motor speed is regulated. The PID-ANN controller performances are analyzed in both steady state and dynamic operating condition with various set speed and various load torque. The rise time, maximum over shoot, settling time, steady state error and speed drops are taken for comparison with conventional PID controller and existing work. The steady state stability analysis of the system also is made by using the transfer function model with MATLAB. The training data for PID-ANN controller is taken from conventional PID controller. The Hybrid PID-ANN controller with DC chopper has better control over the conventional PID controller and the reported existing work. This system is simulated using MATLAB/Simulink and also it is implemented with a NXP 80C51 family Microcontroller (P89V51RD2 BN) based Embedded System.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.