Abstract

This paper presents a novel approach to stability analysis of a fuzzy large-scale system in which the system is composed of a number of Takagi-Sugeno (T-S) fuzzy subsystems with interconnections. The stability analysis is based on Lyapunov functions that are continuous and piecewise quadratic. It is shown that the stability of the fuzzy large-scale systems can be established if a piecewise Lyapunov function can be constructed, and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. It is also demonstrated via a numerical example that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions. The H infinity controllers can also be designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.