Abstract
The main purpose of this paper is to give stability analysis and error estimates of the local discontinuous Galerkin (LDG) methods coupled with three specific implicit-explicit (IMEX) Runge–Kutta time discretization methods up to third order accuracy, for solving one-dimensional time-dependent linear fourth order partial differential equations. In the time discretization, all the lower order derivative terms are treated explicitly and the fourth order derivative term is treated implicitly. By the aid of energy analysis, we show that the IMEX-LDG schemes are unconditionally energy stable, in the sense that the time step τ is only required to be upper-bounded by a constant which is independent of the mesh size h. The optimal error estimate is also derived by the aid of the elliptic projection and the adjoint argument. Numerical experiments are given to verify that the corresponding IMEX-LDG schemes can achieve optimal error accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.