Abstract

Though many studies are focused on the stabilization of nonlinear systems with time-varying delay, they fail to involve the dynamic regulation without on-line optimization commonly. For this sake, feedback linearization, Lyapunov-Razumikhin theorem and polynomial approximation theorem are employed here to verify that the multi-dimensional Taylor network (MTN) controller can stabilize the single input single output (SISO) nonlinear time-varying delay systems through dynamic regulation of the system output with no need for on-line optimization. Here, the design of the controller is transformed into a convex optimization problem, which is tackled by means of the appropriate optimization method. Like its PD-like controller peers, the MTN controller functions well in eliminating the dependence on the system model. The effectiveness of the proposed approach is demonstrated and confirmed via two examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.