Abstract

The application of high-power DC equipment further increases the power supply scale of DC systems. But, it is difficult for a single converter to support high transmission power, so multiple converters must operate in parallel for efficient power transmission. In a parallel system comprising many IPOS phase-shifting full-bridge converters, current sharing can be realized via droop control. However, the stability of the parallel system using current-sharing control will appear poor in light load conditions, so it is necessary to analyze the stability of parallel systems in light load conditions. Firstly, a single IPOS phase-shifted full-bridge control system is modeled; on this basis, the state space model of the n-module paralleled IPOS phase-shifted full-bridge converters system is derived. Then, the influence of load power and the number of parallel IPOS phase-shifted full-bridge converters on the system stability is analyzed via eigenvalue analysis, and an optimal control strategy based on a particle swarm optimization algorithm is proposed. The control parameters are optimized for the parallel system of eight IPOS phase-shifted full-bridge converters. Finally, the above results are simulated to verify the accuracy of the stability analysis and the feasibility of the optimized control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call