Abstract

This technical note focuses on stability analysis and control design of switched affine systems in discrete-time domain. The stability conditions are obtained by taking into account that the system trajectories, governed by a certain switching function, converge to a set of attraction ${\boldsymbol{\mathcal V}}$ containing a desired equilibrium point. These conditions follow from the adoption of a general quadratic Lyapunov function whose time variation is bounded above by a concave-convex function with center determined by minimax theory. Our main contribution is to provide a stabilizing state feedback switching function and an invariant set of attraction ${\boldsymbol{\mathcal V}}_*$ with minimum volume as far as this class of quadratic Lyapunov functions is adopted. The results are applied to sampled-data control of continuous-time switched affine systems with chattering avoidance. The speed control of a DC motor is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call