Abstract
This paper presents the stability analyses of nonuniform time-step (NUTS) locally one-dimensional finite-difference time-domain (LOD-FDTD) methods for electromagnetic (EM) and thermal simulations. The overall (spatial domain) transition matrix for the whole 3-D computational domain is considered for NUTS, which takes into consideration general inhomogeneous and lossy media. Rigorous stability analyses of NUTS LOD-FDTD methods are provided for both EM and thermal simulations. The analytical proofs of unconditional stability are performed through careful assertion of respective matrix definiteness, along with spectral radius and induced matrix norm analyses. Proper transformations and manipulations are carried out differently for EM and thermal analyses to suit different matrix properties. In each analysis, the fundamental form of the transition matrix is utilized with only one main inverse term, which results in much simpler and concise analysis. It is shown that the NUTS LOD-FDTD methods are unconditionally stable for both EM and thermal simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal on Multiscale and Multiphysics Computational Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.