Abstract

We have based our treatment on the assumption of strict spherical symmetry, meaning that all functions and variables (including velocities) are constant on concentric spheres. In reality there will arise small fluctuations on such a sphere, for example, simply from the thermal motion of the gas particles. Such local perturbations of the average state may be ignored if they do not grow. But in a star sometimes small perturbations may grow and give rise to macroscopic local (non-spherical) motions that are also statistically distributed over the sphere. In the basic equations the assumption of spherical symmetry can still be kept if we interpret the variables as proper average values over a concentric sphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.