Abstract

AbstractAlthough groundwater exchange processes are known to modulate atmospheric influences on stream temperature and flow, the implications for ecological stability are poorly understood. Here, we evaluated temporal change in stream fish communities across a gradient of groundwater influence defined by karst terrain (carbonate parent materials) within the Potomac River basin of eastern North America. We surveyed 12 sites in 2022 that had been sampled 29–30 years previously with similar methods. We also collected stream temperature data from each site and used the regression slope of the air‐water temperature relationship to index stream thermal sensitivity and groundwater exchange processes. Sites in karst terrain exhibited strong groundwater controls on stream temperature, and fish communities were more stable over time in these locations than elsewhere. However, stream thermal sensitivity was a stronger predictor of species persistence than the spatial distribution of karst terrain in contributing areas, highlighting the ecological importance of local variation in groundwater discharge processes. The presence of calcium precipitates (marl) in stream substrates was associated with low thermal sensitivity and ecological stability over time, and we suggest such visible features may be a useful indicator of climate change refugia in stream ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.