Abstract

Infimising sequences of nonconvex variational problems often do not converge strongly in Sobolev spaces due to fine oscillations. These oscillations are physically meaningful; finite element approximations, however, fail to resolve them in general. Relaxation methods replace the nonconvex energy with its (semi)convex hull. This leads to a macroscopic model which is degenerate in the sense that it is not strictly convex and possibly admits multiple minimisers. The lack of control on the primal variable leads to difficulties in the a priori and a posteriori finite element error analysis, such as the reliability-efficiency gap and no strong convergence. To overcome these difficulties, stabilisation techniques add a discrete positive definite term to the relaxed energy. Bartels et al. (IFB, 2004) apply stabilisation to two-dimensional problems and thereby prove strong convergence of gradients. This result is restricted to smooth solutions and quasi-uniform meshes, which prohibit adaptive mesh refinements. This thesis concerns a modified stabilisation term and proves convergence of the stress and, for smooth solutions, strong convergence of gradients, even on unstructured meshes. Furthermore, the thesis derives the so-called flux error estimator and proves its reliability and efficiency. For interface problems with piecewise smooth solutions, a refined version of this error estimator is developed, which provides control of the error of the primal variable and its gradient and thus yields strong convergence of gradients. The refined error estimator converges faster than the flux error estimator and therefore narrows the reliability-efficiency gap. Numerical experiments with five benchmark examples from computational microstructure and topology optimisation complement and confirm the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call