Abstract

Soil organic matter (SOM) plays a central role in the global carbon balance and in mitigating climate change. It will therefore be important to understand mechanisms of SOM decomposition and stabilisation. SOM stabilisation is controlled by biotic factors, such as the efficiency by which microbes use and produce organic compounds varying in chemistry, but also by abiotic factors, such as adsorption of plant- and microbially-derived organic matter onto soil minerals. Indeed, the physicochemical adsorption of organic matter onto soil minerals, forming mineral associated organic matter (MAOM), is one of the significant processes for SOM stabilisation. We integrate existing frameworks of SOM stabilisation and illustrate how microbial control over SOM stabilisation interacts with soil minerals. In our new integrated framework, we emphasise the interplay between substrate characteristics and the abundance of active clay surfaces on microbial processes such as carbon use efficiency and recycling. We postulate that microbial use and recycling of plant- and microbially-derived substrates decline with increased abundance of active clay surfaces, and that the shape of these relationships depend on the affinity of each substrate to adsorb, thereby affecting the efficiency by which organic matter remains in the soil and is stabilised into MAOM. Our framework provides avenues for novel research and ideas to incorporate interactions between clay surfaces and microbes on SOM stabilisation in biogeochemical models.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call