Abstract

It is well known that energy-balancing passivity-based control is stymied by the presence of pervasive dissipation. To overcome this problem in electrical circuits, some authors have used power-shaping techniques, where stabilisation is achieved by shaping a function akin to power instead of energy. Some extensions of the techniques to general nonlinear systems, yielding static state-feedback control laws, have also been reported. In this article, we extend these techniques to dynamic feedback control and apply them to nonlinear chemical processes. The stability analysis is carried out using the shaped power function as Lyapunov function. The proposed technique is illustrated with two nonlinear chemical process examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.