Abstract

The melt stabilising efficiency of antioxidants with different structures based on hindered phenols, phosphite esters, phosphonite and a lactone was examined during multi-pass extrusions at 265 °C in three metallocene ethylene-1-octene copolymers (m-LLDPE) having different extent of short chain branching (SCB) and one Zeigler copolymer (z-LLDPE) containing the same level of SCB corresponding to one of the m-LLDPE polymers. The effect of the different antioxidants, when used separately and in combination, was investigated by characterising the changes in the polymer's rheological behaviour, colour formation and structural changes based on unsaturated groups and carbonyl content during five multi-pass extrusions. The results showed that all stabilisation systems examined offered higher efficiency in the metallocene polymers compared to the Zeigler. The effect of the extent of SCB in the metallocene polymers on the stabilising efficacy of the antioxidant systems was also examined, and it was shown that it had a significant effect, with both single and combinations of antioxidants giving higher efficiency in the m-LLDPE polymer containing higher extent of SCB. The presence of the lactone HP136 in mixtures containing hindered phenol–phosphite antioxidant systems gave a higher melt stabilisation efficiency than in its absence and this has been attributed to a co-operative antioxidant reaction steps that take place between the antioxidants resulting in the possible regeneration of the lactone antioxidant through a redox reaction. In all the metallocene PE polymers examined, the biologically hindered phenol, Irganox E, was shown to be more effective than the conventionally hindered phenol Irganox 1076, when examined alone or in combination with phosphite esters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.