Abstract

The aberrant expression of sialyltransferase has a role in cell differentiation, neoplastic transformation and the progression of various types of cancer. Our previous studies have shown that high expression of β-galactoside-α2,3-sialyltransferase III (ST3Gal3) in the metastatic ovarian cancer cell line HO8910PM attenuated cisplatin-induced apoptosis. The present study demonstrated that paclitaxel-induced chemoresistance in ovarian cancer cells upregulated the expression of ST3Gal3 and reduced the activity of caspase-8/3. The results of the present study revealed that the endogenous levels of ST3Gal3 mRNA and protein were significantly higher in HO8910PM cells compared with SKOV3 cells. A higher expression of ST3Gal3 was correlated with an increased resistance to paclitaxel, while the downregulation of ST3Gal3 resulted in paclitaxel-induced apoptosis. Paclitaxel upregulated ST3Gal3 expression at the mRNA and protein levels in HO8910PM cells, but not in SKOV3 cells. Silencing of ST3Gal3 by small interfering RNA reversed these effects and increased the protein levels of caspase-8/3, which may contribute to paclitaxel-induced apoptosis. The results of the present study suggested that ST3Gal3 was a target for paclitaxel-related resistance during ovarian cancer chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.