Abstract
In this paper, a novel spatio-temporal self-constructing graph neural network (ST-SCGNN) is proposed for cross-subject emotion recognition and consciousness detection. For spatio-temporal feature generation, activation and connection pattern features are first extracted and then combined to leverage their complementary emotion-related information. Next, a self-constructing graph neural network with a spatio-temporal model is presented. Specifically, the graph structure of the neural network is dynamically updated by the self-constructing module of the input signal. Experiments based on the SEED and SEED-IV datasets showed that the model achieved average accuracies of 85.90% and 76.37%, respectively. Both values exceed the state-of-the-art metrics with the same protocol. In clinical besides, patients with disorders of consciousness (DOC) suffer severe brain injuries, and sufficient training data for EEG-based emotion recognition cannot be collected. Our proposed ST-SCGNN method for cross-subject emotion recognition was first attempted in training in ten healthy subjects and testing in eight patients with DOC. We found that two patients obtained accuracies significantly higher than chance level and showed similar neural patterns with healthy subjects. Covert consciousness and emotion-related abilities were thus demonstrated in these two patients. Our proposed ST-SCGNN for cross-subject emotion recognition could be a promising tool for consciousness detection in DOC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.