Abstract

Few-shot learning has achieved great success in computer vision. However, when applied to Synthetic Aperture Radar Automatic Target Recognition (SAR-ATR), it tends to demonstrate a bad performance due to the ignorance of the differences between SAR images and optical ones. What is more, the same transformation on both images may cause different results, even some unexpected noise. In this paper, we propose an improved Prototypical Network (PN) based on Spatial Transformation, also known as ST-PN. Cascaded after the last convolutional layer, a spatial transformer module implements a feature-wise alignment rather than a pixel-wise one, so more semantic information can be exploited. In addition, there is always a huge divergence even for the same target when it comes to pixel-wise alignment. Moreover, it reduces computational cost with fewer parameters of the deeper layer. Here, a rotation transformation is used to reduce the discrepancies caused by different observation angles of the same class. Thefinal comparison of four extra losses indicates that a single cross-entropy loss is good enough to calculate the loss of distances. Our work achieves state-of-the-art performance on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call