Abstract

For the current Intellectual Property (IP) transaction scenario, consensus nodes need to simultaneously consensus transactions of the same transaction type, resulting in low consensus efficiency, accuracy, and reliability, which seriously hinders the development of intellectual property. Based on the consortium chain, this paper proposes a secure and efficient blockchain-distributed consensus algorithm, ST-PBFT (Shard Transaction Practical Byzantine Fault Tolerance), applied to the IP transaction scenario. The main contributions of ST-PBFT include the following: first, a grouping method based on the principle of consistent hashing is proposed to group consensus nodes, and nodes group consensus, which reduces the complexity of communication. Second, the transaction consensus group can process IP transactions in parallel, which improves the throughput of the algorithm. Third, a node reputation evaluation model is proposed, which can prevent byzantine nodes from being repeatedly elected as primary nodes. The experimental results show that ST-PBFT can significantly improve the consensus efficiency and reliability and reduce consensus latency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call