Abstract

With the development of the modern smart city, sharing-bikes require behaviors prediction for grid-level areas which is essential for intelligent transportation systems. A model which can predict bike sharing demand behaviours accurately can allocate sharing-bikes in advance to satisfy travel demands alongside saving energy, reducing traffic, cutting down waste for those sharing-bikes companies putting excessive sharing-bikes in unsaturated demand areas. In this paper, we abandon the traditional time series prediction method and use a more efficient deep learning method to solve the traffic forecasting problem. Moreover, instead of considering spatial relation and temporal relation relatively, we produced a deep multi-view spatial-temporal network to combine them into one prediction model framework. In the experimental section, we investigate in the experiment on enormous amount of real sharing-bikes application use data in the core region of Beijing to test the performance of the model framework with a 1 km <inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 1 km grid-level scale and compare it with other existing machine learning approaches and prediction models. And the 4G/5G/6G communication technology facilitate the real-time control of the space-time locations of sharing bikes dynamically. Thus, it provides the basis for high-frequency analysis of space-time patterns, especially supported by the 6G large-scale application in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.