Abstract

The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's largest (ever) Very High Energy gamma-ray telescope array, consisting of more than 100 telescopes covering an area of several square kilometers to observe the electromagnetic showers generated by incoming cosmic gamma-rays with very high energies (from a few tens of GeV up to over 100 TeV). Observing such sources requires - amongst many other things - a large FoV (Field of View). In the framework of CTA, SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) aims to investigate and to build one of the two first CTA prototypes based on the Schwarzschild-Couder (SC) optical design that delivers a FoV close to 10 degrees in diameter. To achieve the required performance per unit cost, many improvements in mirror manufacturing and in other technologies are required. We present in this paper the current status of our project. After a brief introduction of the very high energy context, we present the opto-mechanical design, discuss the technological tradeoffs and explain the electronics philosophy that will ensure the telescopes cost is minimised without limiting its capabilities. We then describe the software nedeed to operate the telescope and conclude by presenting the expected telescope performance and some management considerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call