Abstract

The thermohaline structure, circulation, and heat fluxes in the Gulf of California entrance during June 2004 are described based on conductivity‐temperature‐depth and Lowering Acoustic Doppler Current Profiler data collected in a 14‐day survey, supported by satellite data. The AVHRR images show extensive mesoscale structures in the region, the most striking being (1) a cool filament extending from the California Current domain and (2) a warm intrusion along the mainland shelf. On the warm side of the thermal front created by the cool filament there was a strong current flowing into the Gulf, with speeds up to 0.70 ms−1 in the surface; this current, which the SST images suggest was associated with a decaying eddy, carried 6 Sv into the Gulf. Associated with the second structure, there was an ingoing coastal current on the mainland shelf, with weak surface currents but with speeds ∼0.25 ms−1 at its core, between 70 and 200 m; this coastal current transported 2 Sv into the Gulf. The two ingoing currents appear to join inside the Gulf, forming a very strong (speeds 0.40–0.80 ms−1) narrow (∼30 km) coastal current between the surface and 500 m depth. Changes in the thermohaline structure of the upper layers observed by repeat sampling of three cross sections were dominated by advection. However, it was found that the advective heat flux is very variable in space and time. For the period of observation it was estimated that the lateral heat input was 4.8 ± 3.0 × 105 Wm−2 as estimated with LADCP currents and 5.7 ± 2.20 × 105 Wm−2 with geostrophic velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.