Abstract

Hourly sea surface temperature (SST) observations from the geostationary satellite are increasingly used in studies of the diurnal warming of the surface oceans. The aim of this study is to derive the spatial and temporal distribution of diurnal warming in the China seas and northwestern Pacific Ocean from Multi-functional Transport Satellite (MTSAT) SST. The MTSAT SST is validated against drifting buoy measurements firstly. It shows mean biases is about–0.2°C and standard deviation is about 0.6°C comparable to other satellite SST accuracy. The results show that the tropics, mid-latitudes controlled by subtropical high and marginal seas are frequently affected by large diurnal warming. The Kuroshio and its extension regions are smaller compared with the surrounding regions. A clear seasonal signal, peaking at spring and summer can be seen from the long time series of diurnal warming in the domain in average. It may due to large insolation and low wind speed in spring and summer, while the winter being the opposite. Surface wind speed modulates the amplitude of the diurnal cycle by influencing the surface heat flux and by determining the momentum flux. For the shallow marginal seas, such as the East China Sea, turbidity would be another important factor promoting diurnal warming. It suggests the need for the diurnal variation to be considered in SST measurement, air-sea flux estimation and multiple sensors SST blending.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call