Abstract

Somatostatin (SS) is an inhibitory regulator of secretory and proliferative responses that activates a group of receptors in the plasma membrane termed SSR1-5. SSR2 is one of the most abundant SSR, which also is expressed in high numbers in many neuroendocrine tumor types. Here, we describe a study of the presence and intracellular localization of the spliced variant SSR2(a) and its endogenous ligand SS in the cultured human neuroblastoma (NB) cell line, SH-SY5Y, by immunohistochemistry and confocal laser scanning. The integral neuronal synaptic vesicle membrane proteins synaptophysin (p38) and SV2 were studied, as well as the IR of catecholaminergic and cholinergic markers. RA treatment was used as an inducer of neuronal-like differentiation in our SH-SY5Y cell line. After the treatment, the presence of catecholaminergic markers (including NPY) decreased while the cholinergic markers (including VIP) increased. p38 and SV2 as well as VIP were shifted into the rather long neuritic processes, indicating efficient intracellular transport. The SSR2(a) protein was significantly increased by RA treatment, but only minor increases in mRNA for this receptor protein could be seen. No subcellular co-localization between p38/SV2 and the cytoplasmic granular receptor material was demonstrated. The SSR2(a) receptor ligand SS was found to be present not only in the cytoplasm but also in the nucleus, and more strongly so after RA treatment. The possible reason for this may be that this peptide, like other small peptides, may serve as transcription factor, or cofactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call