Abstract

This paper presents a novel control of a large-scale PV solar farm as STATCOM, termed PV-STATCOM, for alleviation of subsynchronous resonance (SSR) in a steam turbine driven synchronous generator connected to a series compensated transmission line. During nighttime, the PV solar farm can operate as a STATCOM with its entire inverter capacity for SSR mitigation. During daytime, if a system fault triggers SSR, the solar farm autonomously discontinues its normal active power generation and releases its entire inverter capacity to operate as PV-STATCOM for SSR prevention. Once the subsynchronous resonances are damped, the solar farm returns to its normal real power production. Electromagnetic transients studies using EMTDC/PSCAD are performed to demonstrate that a solar farm connected at the terminals of synchronous generator in the IEEE First SSR Benchmark system can damp all the four torsional modes at all the four critical levels of series compensation, and return to normal PV power production in less than half a minute. This proposed PV-STATCOM technology can either obviate or reduce the need of an expensive flexible ac transmission system device to accomplish the same objective. Furthermore, this technology is more than an order of magnitude cheaper than a conventional static var compensators or STATCOM of similar size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.