Abstract

Common bermudagrass has been widely used as a major warm-season turf, forage, and soil stabilization grass in the southern United States. However, codominant marker development, linkage, and quantitative trait loci (QTL) mapping resources are limited in the important taxon. Accordingly, the objectives of this study were to develop simple sequence repeat (SSR) markers, construct a genetic map, and identify genomic regions associated with establishment rate. Five genomic SSR libraries were constructed, sequenced, and used in the development of 1003 validated SSR primer pairs (PPs). A linkage map was constructed using a first-generation selfed population derived from a genotype A12359 (2 = 4 = 36). A total of 249 polymorphic SSR PPs were mapped to 18 linkage groups (LGs). The total length of the map is 1094.7 cM, with an average marker interval of 4.3 cM. Ninety-eight out of 252 mapped loci (39%) were found to be distorted from the Mendelian 1:2:1 segregation ratio. Among the other 154 nondistorted loci, 88 coupling vs. 66 repulsion linkage phases were observed to confirm the allopolyploid origin of the parent. Ground coverage (GCR) phenotypic data in the establishment stage were collected in two replicated field trials. Quantitative trait loci mapping identified five genomic regions significantly related to the trait. The findings of this study provide valuable genetic tools and resources for genomic research, genetic improvement, and breeding new cultivars in the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call