Abstract

Protein secretion systems used by almost all bacteria are highly significant for the normal existence and interaction of bacteria with their host. The accumulation of genome sequence data in past few years has provided great insights into the distribution and function of these secretion systems. In this study, a support vector machine (SVM)- based method, SSPred was developed for the automated functional annotation of proteins involved in secretion systems further classifying them into five major sub-types (Type-I, Type-II, Type-III, Type-IV and Sec systems). The dataset used in this study for training and testing was obtained from KEGG and SwissProt database and was curated in order to avoid redundancy. To overcome the problem of imbalance in positive and negative dataset, an ensemble of SVM modules, each trained on a balanced subset of the training data were used. Firstly, protein sequence features like amino-acid composition (AAC), dipeptide composition (DPC) and physico-chemical composition (PCC) were used to develop the SVM-based modules that achieved an average accuracy of 84%, 85.17% and 82.59%, respectively. Secondly, a hybrid module (hybrid-I) integrating all the previously used features was developed that achieved an average accuracy of 86.12%. Another hybrid module (hybrid-II) developed using evolutionary information of a protein sequence extracted from position-specific scoring matrix and amino-acid composition achieved a maximum average accuracy of 89.73%. On unbiased evaluation using an independent data set, SSPred showed good prediction performance in identification and classification of secretion systems. SSPred is a freely available World Wide Web server at http//www.bioinformatics.org/sspred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.