Abstract

The Ly-6 protein family refers to a group of glycophosphatidyl inositol-anchored membrane proteins with ten conserved cysteines. They are thought to be involved in cellular adhesion and signaling. Recently, a subfamily of secreted Ly-6 proteins has been identified. In the present study, we report a secreted Ly-6 protein, secreted seminal vesicle Ly-6 protein 1 (SSLP-1) purified from mouse seminal vesicles using a series of steps including ion-exchange chromatography on a diethylaminoethyl (DEAE)-Sephacel column, gel filtration on a Sephadex G-75 column, and ion-exchange HPLC on a sulfopropyl column. Further analysis demonstrated it to be a novel, previously unnamed, 17 kDa glycoprotein. N-glycosidase F treatment revealed a core protein with a molecular mass of 8720 Da. By Basic Local Alignment Search Tool Protein analysis, we found that SSLP-1 had ten conserved cysteine residues identical with other secreted Ly-6 proteins. The gene Gm191, which is located on chromosome 9, encodes SSLP-1. By Northern blotting with 21 different mouse tissues, we found that Sslp-1 mRNA was predominantly expressed in the seminal vesicle. Immunohistochemistry revealed SSLP-1 protein in the luminal fluid and mucosal epithelium of the seminal vesicles. The amount of Sslp-1 mRNA and SSLP-1 protein in the seminal vesicle was regulated by testosterone and correlated with the stage of animal maturation. The tissue-specific expression pattern suggests that SSLP-1 may play a physiological role in male mouse reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.