Abstract

Ypd1p, a histidine-containing phosphotransfer protein, plays an important role in a branched His-Asp phosphorelay signal transduction pathway that regulates cellular responses to hyperosmotic stress in Saccharomyces cerevisiae. Ypd1p is required for phosphoryl group transfer from the membrane-bound Sln1p sensor histidine kinase to two downstream response regulator proteins, Ssk1p and Skn7p. To investigate the molecular basis for interaction of Ypd1p with these response regulator domains, we used an approach that coupled alanine-scanning mutagenesis of surface-exposed residues in Ypd1p with a yeast two-hybrid interaction screen. Mutated residues that adversely affected the interaction of Ypd1p with the C-terminal response regulator domain of Ssk1p were identified and found to cluster on or near the alphaA helix in Ypd1p. Our results, supported by analysis of a modeled complex, identify a binding site on Ypd1p for response regulators that is composed of a cluster of conserved hydrophobic residues surrounded by less conserved polar residues. We propose that molecular interactions involving Ypd1p are mediated primarily through hydrophobic contacts, whereas binding specificity and strength of interaction may be influenced by select polar side chain interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.