Abstract

PurposeThe purpose of this paper is to find the efficient iterative methods for solving the general matrix equation A1X+ XA2+A3XH+XHA4=B (including Lyapunov and Sylvester matrix equations as special cases) with the unknown complex (reflexive) matrix X.Design/methodology/approachBy applying the principle of hierarchical identification and the Hermitian/skew‐Hermitian splitting of the coefficient matrix quadruplet A1; A2; A3; A4 the authors propose a shift‐splitting hierarchical identification (SSHI) method to solve the general linear matrix equation A1X+XA2+A3XH+XHA4=B. Also, the proposed algorithm is extended for finding the reflexive solution to this matrix equation.FindingsThe authors propose two iterative methods for finding the solution and reflexive solution of the general linear matrix equation, respectively. The proposed algorithms have a simple, neat and elegant structure. The convergence analysis of the methods is also discussed. Some numerical results are given which illustrate the power and effectiveness of the proposed algorithms.Originality/valueSo far, several methods have been presented and used for solving the matrix equations by using vec operator and Kronecker product, generalized inverse, generalized singular value decomposition (GSVD) and canonical correlation decomposition (CCD) of matrices. In several cases, it is difficult to find the solutions by using matrix decomposition and generalized inverse. Also vec operator and Kronecker product enlarge the size of the matrix greatly therefore the computations are very expensive in the process of finding solutions. To overcome these complications and drawbacks, by using the hierarchical identification principle and the Hermitian=skew‐Hermitian splitting of the coefficient matrix quadruplet (A1; A2; A3; A4), the authors propose SSHI methods for solving the general matrix equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.