Abstract
In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neighborhood field graph (WNFG) to represent EEG signals. The WNFG reduces redundant edges between graph nodes and has lower graph generation time and memory usage than the baseline solution. The sequential graph convolutional network is further developed from a WNFG by combining sparse weight pruning and the alternating direction method of multipliers (ADMM). Compared with the state-of-the-art method, our method has the same classification accuracy on the Bonn public dataset and the spikes and slow waves (SSW) clinical real dataset when the connection rate is ten times smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.