Abstract

Aspect-level sentiment analysis aims to identify the sentiment polarity of specific aspects appearing in a given sentence or review. The model based on graph structure uses a dependency tree to link the aspect word with its corresponding opinion word and achieves significant results. However, for some sentences with ambiguous syntactic structure, it is difficult for the dependency tree to accurately parse the dependencies, which introduces noise and degrades the performance of the model. Based on this, we propose a syntactic and semantic enhanced multi-layer graph attention network (SSEMGAT), which introduces constituent trees in syntactic features to compensate for dependent trees at the clause level, exploiting aspect-aware attention in semantic features to assign the attention weight of specific aspects between contexts. The enhanced syntactic and semantic features are then used to classify specific aspects of sentiment through a multi-layer graph attention network. Accuracy and Macro-F1 are used as evaluation indexes in the SemEval-2014 Task 4 Restaurant and Laptop dataset and the Twitter dataset to compare the proposed model with the baseline model and the latest model, achieving competitive results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.