Abstract

The numerical method presented by Arakawa in 1966[3] implements a ?nite difference scheme of the Jacobian for the solution of the equation of motion for two-dimensional incompressible ?ows, which diminishes nonlinear computational instability and permits long-term numerical integrations. This paper presents an ef?cient implementation of Arakawa's formula using vectorized Streaming SIMD Extension (SSE) and Advanced Vector Extension (AVX) instructions. Additionally, we have improved the performance of memory access in the code. Performance measurements show that the vectorizedimplementation is close to two times more ef?cient compared to an implementation without SSE. The AVX version will in the near future further improve the vectorized performance with an estimated factor of up to 1.8. Finally we compare our results to an implementation on a general purpose graphics processor (GPGPU) and to auto-vectorization by two compilers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.