Abstract

Deep Learning (DL) techniques have recently been used in medical image segmentation and the reconstruction of 3D anatomies of a human body. In this work, we propose a semi-supervised DL (SSDL) approach utilizing a CNN-based 3D U-Net model for femur segmentation from sparsely annotated quantitative computed tomography (QCT) slices. Specifically, QCT slices at the proximal end of the femur forming ball and socket joint with acetabulum were annotated for precise segmentation, where a segmenting binary mask was generated using a3D U-Net model to segment the femur accurately. A total of 5474 QCT slices were considered for training among which 2316 slices were annotated. 3D femurs were further reconstructed from segmented slices employing polynomial spline interpolation. Both qualitative and quantitative performance of segmentation and 3D reconstruction were satisfactory with more than 90% accuracy achieved for allof the standardperformance metrics considered. The spatial overlap index and reproducibility validation metric for segmentation-Dice Similarity Coefficient was 91.8% for unseen patients and 99.2% for validated patients. An average relative error of 12.02% and 10.75% for volume and surface area, respectively, were computed for 3D reconstructed femurs. The proposed approach demonstrates its effectiveness in accurately segmenting and reconstructing 3D femur from QCT slices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call