Abstract

Blockchain, known as distributed ledger technology, suffers from the scalability problem. A major approach to overcoming this limitation is using sharding, which divides the network into multiple smaller groups, called shards, these shards can work in parallel on disjoint transactions and maintain disjoint ledgers. Existing sharding-based protocols rely on reshuffling scheme to maintain security, however, since each shard only maintains a disjoint ledger, reshuffling the network will cause huge data migration. In this work, we propose SSChain, a novel non-reshuffling structure that supports both transaction sharding and state sharding. Our empirical evaluations suggest that SSChain can process more than 6,500 TPS in a network of 1,800 nodes without any data migration overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.