Abstract

Sclerotinia sclerotiorum is a devastating fungal pathogen that causes severe crop losses worldwide. It is of vital importance to understand its pathogenic mechanism for disease control. Through a forward genetic screen combined with next-generation sequencing, a putative protein kinase, SsCak1, was found to be involved in the growth and pathogenicity of S. sclerotiorum. Knockout and complementation experiments confirmed that deletions in SsCak1 caused defects in mycelium and sclerotia development, as well as appressoria formation and host penetration, leading to complete loss of virulence. These findings suggest that SsCak1 is essential for the growth, development, and pathogenicity of S. sclerotiorum. Therefore, SsCak1 could serve as a potential target for the control of S. sclerotiorum infection through host-induced gene silencing (HIGS), which could increase crop resistance to the pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call