Abstract

Multiple myeloma (MM) remains an incurable disease. Identification of meaningful co-expressed gene clusters or representative biomarkers of MM may help to identify new pathological mechanisms and promote the development of new therapies. Here, we performed weighted sgene co-expression network analysis and a series of bioinformatics analysis to identify single stranded DNA binding protein 1 (SSBP1) as novel hub gene associated with MM development and prognosis. In vitro, CRISPR/cas9 mediated knockdown of SSBP1 can significantly inhibit the proliferation of MM cells through inducing apoptosis and cell cycle arrest in G0/G1 phase. We also found that decreased SSBP1 expression significantly increased mitochondrial reactive oxygen species (mtROS) generation and the level of phosphorylated p38MAPK. Furthermore, it was further verified that disruption of SSBP1 expression could inhibit the tumor growth via p38MAPK pathway in a human myeloma xenograft model. In summary, our study is the first to demonstrate that SSBP1 promotes MM development by regulating the p38MAPK pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.