Abstract

Learning object shapes from a single image is challenging due to variations in scene content, geometric structures, and environmental factors, which create significant disparities between 2D image features and their corresponding 3D representations, hindering the effective training of deep learning models. Existing learning-based approaches can be divided into two-stage and single-stage methods, each with limitations. Two-stage methods often rely on generating intermediate proposals by searching for similar structures across the entire dataset, a process that is computationally expensive due to the large search space and high-dimensional feature-matching requirements, further limiting flexibility to predefined object categories. In contrast, single-stage methods directly reconstruct 3D shapes from images without intermediate steps, but they struggle to capture complex object geometries due to high feature loss between image features and 3D shapes and limit their ability to represent intricate details. To address these challenges, this paper introduces SS3DNet-AF, a single-stage, single-view 3D reconstruction network with an attention-based fusion (AF) mechanism to enhance focus on relevant image features, effectively capturing geometric details and generalizing across diverse object categories. The proposed method is quantitatively evaluated using the ShapeNet dataset, demonstrating its effectiveness in achieving accurate 3D reconstructions while overcoming the computational challenges associated with traditional approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.