Abstract

BackgroundNucleosome translocation along DNA is catalyzed by eukaryotic SNF2-type ATPases. One class of SNF2-ATPases is distinguished by the presence of a C-terminal bromodomain and is conserved from yeast to man and plants. This class of SNF2 enzymes forms rather large protein complexes that are collectively called SWI/SNF complexes. They are involved in transcription and DNA repair. Two broad types of SWI/SNF complexes have been reported in the literature; PBAF and BAF. These are distinguished by the inclusion or not of polybromo and several ARID subunits. Here we investigated human SS18, a protein that is conserved in plants and animals. SS18 is a putative SWI/SNF subunit which has been implicated in the etiology of synovial sarcomas by virtue of being a target for oncogenic chromosomal translocations that underlie synovial sarcomas.Methodology/Principal FindingsWe pursued a proteomic approach whereby the SS18 open reading frame was fused to a tandem affinity purification tag and expressed in amenable human cells. The fusion permitted efficient and exclusive purification of so-called BAF-type SWI/SNF complexes which bear ARID1A/BAF250a or ARID1B/BAF250b subunits. This demonstrates that SS18 is a BAF subtype-specific SWI/SNF complex subunit. The same result was obtained when using the SS18-SSX1 oncogenic translocation product. Furthermore, SS18L1, DPF1, DPF2, DPF3, BRD9, BCL7A, BCL7B and BCL7C were identified. ‘Complex walking’ showed that they all co-purify with each other, defining human BAF-type complexes. By contrast,we demonstrate that human PHF10 is part of the PBAF complex, which harbors both ARID2/BAF200 and polybromo/BAF180 subunits, but not SS18 and nor the above BAF-specific subunits.Conclusions/SignificanceSWI/SNF complexes are found in most eukaryotes and in the course of evolution new SWI/SNF subunits appeared. SS18 is found in plants as well as animals. Our results suggest that in both protostome and deuterostome animals, a class of BAF-type SWI/SNF complexes will be found that harbor SS18 or its paralogs, along with ARID1, DPF and BCL7 paralogs. Those BAF complexes are proteomically distinct from the eukaryote-wide PBAF-type SWI/SNF complexes. Finally, our results suggests that the human bromodomain factors BRD7 and BRD9 associate with PBAF and BAF, respectively.

Highlights

  • Gene expression programs determine cell identity and response to endocrine stimuli, as has been demonstrated most dramatically by the generation of induced pluripotent stem cells with the Oct4, Sox2, Klf4 and c-Myc transcription factors [1]

  • Paralogous human SWI/SNF subunits are known to be expressed in tissue and signal specific fashion, generating alternative SWI/SNF complex configurations that can cooperate with transcription factor networks to coordinate cell proliferation and differentiation

  • We focus on SWI/SNF subunits that are absent from yeast but conserved in animals and plants (SS18) or only in animals (DPF, BCL7 and PHF10) (Table 2)

Read more

Summary

Introduction

Gene expression programs determine cell identity and response to endocrine stimuli, as has been demonstrated most dramatically by the generation of induced pluripotent stem cells with the Oct, Sox, Klf and c-Myc transcription factors [1]. The C-terminal bromo domain-bearing SNF2 enzymes are found in so-called SWI/SNF multiprotein complexes and are conserved in most eukaryotes They are implicated in transcriptional regulation and multiple DNA repair pathways [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]. One class of SNF2ATPases is distinguished by the presence of a C-terminal bromodomain and is conserved from yeast to man and plants This class of SNF2 enzymes forms rather large protein complexes that are collectively called SWI/SNF complexes. SS18 is a putative SWI/SNF subunit which has been implicated in the etiology of synovial sarcomas by virtue of being a target for oncogenic chromosomal translocations that underlie synovial sarcomas

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call