Abstract
AbstractIn dye‐sensitized solar cells (DSSCs), the charge recombination at the TiO2/dye/electrolyte interface greatly influences the photoelectron conversion efficiency. Hybrid semiconductor materials with matched band potentials are designed to reduce the charge recombination. In this study, SrTiO3/TiO2 hybridstructure was synthesized by using TiO2 nanoparticles as template in a hydrothermal, showing a negative shift in the flat band potential. The DSSC with the SrTiO3/TiO2 anode exhibits an increased photovoltage and a reduced photocurrent. The suppression of charge recombination at the TiO2/dye/electrolyte interface was observed in the electrochemical impedance spectroscopy, causing an improvement in the photovoltage. However, the SrTiO3/TiO2 system shows an obstructed electrons injection from the dye to SrTiO3/TiO2, limiting the photocurrent performance. The photoelectrochemical properties of the SrTiO3/TiO2 system are discussed in detail herein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.