Abstract
Exploration of high performance and stable metal-oxide-based hybrid photocatalysts for hydrogen evolution is highly desirable. In this work, novel SrTiO3 nanoparticles/SnNb2O6 nanosheets hybrid 0D/2D heterojunctions with an interfacial interaction were constructed by a facile two-step wet chemistry strategy. Different characterization techniques were adopted to investigate the microscopic structures and physicochemical properties of the as-prepared hybrid heterojunctions. The optimal weight percent of SrTiO3 loading is 20 wt%, generating the highest H2 evolution amount of 17.16 μmol, which are 298 and 2 times higher than that of bare SrTiO3 and SnNb2O6. It can be suggested that an interfacial interaction among SrTiO3 and SnNb2O6 could result in efficient charge separation and enhanced H2-generation activity, which was confirmed by photoelectrochemical analyses. This work implies that the construction of 0D/2D metal-oxide-based hybrid heterojunctions with an interfacial interaction is an effective way to f...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.