Abstract

Corneal endothelium is mostly sensitive to oxidative pressure and mitochondrial dysfunction. However, the oxidative-antioxidant mechanism of corneal endothelial cells (CECs) remains partially defined. Silent information regulator 1 (SIRT1) is a well-studied therapeutic target of oxidative damage. This study aimed to determine the SIRT1 expression in ultraviolet A (UVA)-induced corneal endothelial damage and explore potential drugs to repair corneal endothelial oxidative injury. In this study, we showed that CECs exhibited cellular apoptosis, reactive oxygen species (ROS) accumulation and decreased SIRT1 expression. In addition, UVA induced the imbalance of mitochondrial homeostasis and function, involving in mitochondrial membrane potential, mitochondrial fusion/fission and mitochondrial energy metabolism. SRT1720, the SIRT1 activator, effectively increased SIRT1 expression and attenuated UVA-induced oxidative damage in CECs. The therapeutic effects of SRT1720 for corneal endothelial oxidative damage were also verified in UVA-irradiated mice model. Our findings indicated that SIRT1 maintained the oxidant-antioxidant balance in corneal endothelium, suggesting a new promising therapeutic target for corneal endothelial dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.