Abstract

Nearest neighbor searches in high-dimensional space have many important applications in domains such as data mining, and multimedia databases. The problem is challenging due to the phenomenon called "curse of dimensionality". An alternative solution is to consider algorithms that returns a c -approximate nearest neighbor ( c -ANN) with guaranteed probabilities. Locality Sensitive Hashing (LSH) is among the most widely adopted method, and it achieves high efficiency both in theory and practice. However, it is known to require an extremely high amount of space for indexing, hence limiting its scalability. In this paper, we propose several surprisingly simple methods to answer c -ANN queries with theoretical guarantees requiring only a single tiny index. Our methods are highly flexible and support a variety of functionalities, such as finding the exact nearest neighbor with any given probability. In the experiment, our methods demonstrate superior performance against the state-of-the-art LSH-based methods, and scale up well to 1 billion high-dimensional points on a single commodity PC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.