Abstract

Open Shortest Path First (OSPF) is a broadly used routing protocol in today's data center networks. Though it can adaptively find alternative paths when link failure is detected, route recomputation in OSPF is CPU-intensive, and usually needs quite a long time to achieve routing convergence. Besides, the configuration in OSPF is rather complex. In this paper, we propose Sequoia Routing Protocol (SRP), a routing protocol with a dedicated shortest path calculation algorithm, designed for data center networks. By leveraging the observation that each data center has a fixed Clos topology, SRP largely simplifies routing configuration, and achieves light-weight computation. We show that SRP outperforms OSPF with a much faster convergence time by simulation in ns-3. We also implement SRP in real-world switches, showing that SRP is as efficient as OSPF even for a small-scale network where route recomputation of OSPF does not take a long time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.