Abstract

Solar Photovoltaic (SPV) offers alternative sources of energy which is in general pollution free, environment friendly, sustainable and unlimited in nature. The concerns of environment due to green house gases and global warming force research communities to develop a smart power system that has capability to integrate Solar Photovoltaic with the power grid. There are many challenges in integrating SPV generation with the grid like efficiency, power quality, stability, cost of the energy conversion, load management, reliability etc. Moreover, power quality problems at distribution level like harmonics, unbalanced supply, unbalanced loads, reactive power, load management etc. affect the operation of grid connected SPV systems. Single stage grid connected PV systems has the advantage of use of a single VSC for MPPT (Maximum Power Point Tracking) and inverter operation. The proposed grid interfaced SPV generating system consists of a SPV array, VSC (Voltage Source Converter), three-phase grid and linear/nonlinear loads. The SPV energy is injected in to the DC bus of VSC during sunshine hours. The DC bus voltage of a three- phase VSC is regulated for MPPT from the PV array. Secondly, this system serves to provide harmonics elimination, load balancing, power factor correction (PFC) and regulating the terminal voltage at the PCC (Point of Common Coupling). In this paper, a SRF (Synchronous Reference Frame) based control of a single stage dual purpose grid connected SPV system is proposed and simulation based on MATLAB and Simpower System Blockset demonstrates the dual purpose of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.