Abstract

Src tyrosine kinases (TKs) are signaling proteins involved in cell signaling pathways toward cytoskeletal, membrane and nuclear targets. In the present study, using a selective Src TK inhibitor, PP1, we investigated the roles of Src TKs in the key pulmonary responses, NF-kappaB activation, and integrin signaling during acute lung injury in BALB/C mice intratracheally treated with LPS. LPS resulted in c-Src phosphorylation in lung tissue and the phospho-c-Src was predominantly localized in recruited neutrophils and alveolar macrophages. PP1 inhibited LPS-induced increases in total protein content in bronchoalveolar lavage fluid, neutrophil recruitment, and increases in the production or activity of TNF-alpha and matrix metalloproteinase-9. PP1 also blocked LPS-induced NF-kappaB activation, and phosphorylation and degradation of IkappaB-alpha. The inhibition of NF-kappaB activation by PP1 correlated with a depression of LPS-induced integrin signaling, which included increases in the phosphorylations of integrin beta(3), and of the focal adhesion kinase (FAK) family members, FAK and Pyk2, in lung tissue, and reductions in the fibrinogen-binding activity of alveolar macrophages. Moreover, treatment with anti-alpha(v), anti-beta(3), or Arg-Gly-Asp-Ser (RGDS), inhibited LPS-induced NF-kappaB activation. Taken together, our findings suggest that Src TKs play a critical role in LPS-induced activations of NF-kappaB and integrin (alpha(v)beta(3)) signaling during acute lung injury. Therefore, Src TK inhibition may provide a potential means of ameliorating inflammatory cascade-associated lung injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.